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Abstract. Multiple basis sets are used in calculations of
perturbational corrections for triples replacements in the
framework of single-reference coupled-cluster theory.
We investigate a computational procedure, where the
triples correction is calculated from a reduced space of
virtual orbitals, while the full space is employed for the
coupled-cluster singles-and-doubles model. The reduced
space is either constructed from a prescribed unitary
transformation of the virtual orbitals (for example into
natural orbitals) with subsequent truncation, or from a
reduced set of atomic basis functions. After the selection
of a reduced space of virtual orbitals, the singles and
doubles amplitudes obtained from a calculation in the
full space are projected onto the reduced space, the
remaining set of virtual orbitals is brought into canon-
ical form by diagonalizing the representation of the
Fock operator in the reduced space, and the triples
corrections are evaluated as usual. The case studies
include the determination of the spectroscopic constants
of N,, F,, and CO, the geometry of Oj;, the electric
dipole moment of CO, the static dipole polarizability of
F~, and the Ne - - -Ne interatomic potential.

Key words: Coupled-cluster theory — Triples corrections
— Multiple basis sets — Natural orbitals — Integral-direct
methods

1 Introduction

The basis-set convergence of calculated electron-corre-
lation effects is a critical issue in computational methods
of molecular electronic-structure ab initio theory. Very
recently, we performed systematic calculations on the
water molecule, investigating the basis-set convergence
for Hartree-Fock self-consistent field theory (SCF), for
perturbation theory at the second-order Mgller-Plesset
level (MP2), for coupled-cluster theory at the singles-
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and-doubles level (CCSD), and for coupled-cluster
theory at the singles-and-doubles level including pertur-
bational corrections for connected triples [CCSD(T)] [1].

The results of this study for the correlation-consistent
core-valence basis sets CVXZ with X =2,3,...6 (X is
sometimes referred to as the ‘“‘cardinal number”) are
presented in Table 1. The largest basis set (CV6Z) cor-
responds to a [12s11p9d7f 5¢3hli] contraction for O and
a [6s5p4d3f2g1h] contraction for H, amounting to 412
atomic basis functions.

On an absolute scale, the basis-set truncation error of
the CV6Z basis is relatively small both at the SCF level
(0.3 mEy) and for the CCSD(T) triples correction
(0.2 mEy), but it is substantial for the CCSD correlation
energy (4.8 mEy). For comparison, the corresponding
errors are 2.6, 0.9, and 15.1 mE}, for the CVQZ basis. It
seems that the CCSD correlation energy, in particular,
suffers from the well-known slow basis-set convergence
of correlation energies. For the triples, the convergence
appears to be faster, in particular with respect to a
threshold of chemical accuracy.

Thus, concerning the total CCSD(T) energy of H,O,
if the goal were to achieve a prescribed accuracy of — say
— 1 mEy, it would be sufficient to employ the CV5Z basis
set for both the SCF calculation and the CCSD(T) tri-
ples correction. However, the CCSD calculation would
require a much larger basis set. Based on a two-param-
eter fit of the form E =A+ BX "} to the computed
CCSD energies for 3 < X < 6, we expect that the CCSD
truncation error of the (nonexisting) CVXZ basis set
with cardinal number X = 10 would be around the tar-
get accuracy of 1 mEy, [1]. This basis set would consist of
as many as 1660 functions.

The difference in behavior of the doubles and triples
amplitudes indicates that it may be advantageous to
consider the use of different orbital spaces for these
amplitudes.

Jurgens-Lutovsky and AlmlI6f have proposed ex-
ploiting the fact that SCF and MP2 calculations require
basis sets of different size and quality, and have suggested
using ““‘dual basis sets in calculations of electron correla-
tion” [2]. They employed a small space of orbitals for
the SCF calculation (S;) and a larger space for the MP2
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Table 1. H,O molecule:* SCF

energy, CCSD correlation Basis set Nyir Escr (En) AEccsp (En) AEr (En)
energy, and CCSD(T) triples
correction (AEt) obtained from CvDZ 23 =76.027 2 —0.251 8 —0.003 3
- : : CVTZ 66 -76.057 4 -0.324 2 —-0.008 2
calculations using correlation- CVQZ 139 76,065 0 -0.346 5 ~0.009 5
(S::trsmstent core-valence basis CVsz 250 ~76.067 1 0353 3 ~0.010 0
CV6Z° 407 =76.067 3 —-0.356 8 -0.010 2
Extrapolated limit [1] -76.067 6 —-0.361 6 -0.010 4

& Geometry: Ro_y = 1.80885 ag, /u_o_n = 104.52°

> Number of virtual orbitals

¢ The CV6Z basis set was developed in Ref. [1]

correlation energy (S,), with S} chosen as a subset of S,. In
the present study, we explore the possibility of using yet a
different orbital space for the triples correction (for ob-
vious reasons, we will denote this space as S3). We expect
that this space can be chosen smaller than the S, space,
and that the use of “‘multiple basis sets” in CCSD(T)
calculations will result in efficient computational models.

The usefulness of multiple basis sets should be ana-
lyzed in view of the “integral-direct” methods [3, 4]. For
example, the dual basis sets of Jurgens-Lutovsky and
Almlof are very efficient in integral-direct MP2 calcula-
tions [5-8], where the number of two-electron integrals is
much reduced, but the computational scheme would not
be useful in integral-direct CCSD calculations [9-11]. On
the other hand, the integral-direct formulation of CCSD
theory allows us to employ very large basis sets
of atomic functions at this level, whereas the use of
extended basis sets is much less straightforward for the
computation of the triples corrections. More flexible
approaches are needed.

In this paper, we present our preliminary results
obtained from using a small orbital space S; for the
CCSD(T) triples correction. We have investigated the
use of different sets of atomic basis functions, for in-
stance the atomic natural orbitals (ANO) basis sets of
Almlof and Taylor [12, 13], as well as several truncations
of the space of the molecular virtual orbitals, for ex-
ample by selecting orbitals with respect to the occupa-
tion numbers of (molecular) natural orbitals (NO) that
were determined at the MP2 level.

The history of optimizations of the virtual space for
the computation of electron-correlation effects is rich.
One example is the expansion in terms of natural
(spin)orbitals introduced by Léwdin [14], and approxi-
mative NOs have been applied with great success in
configuration interaction (CI) and coupled-electron
pair approximation (CEPA) calculations in the 1970s
[15-19]. Another category of virtual orbitals is related to
certain effective potentials, for example to the Hartree-
Fock potential of the positively charged ion of the sys-
tem under study [20-32]. The third example is the ap-
proach developed at the end of the 1980s by Adamowicz
and Bartlett, who optimized the virtual space by mini-
mizing the Hylleraas functional of MP2 theory [33-38].
The different optimizations of active virtual spaces have
been reviewed quite recently by Wasilewski et al. [39, 40].
We note, however, that the goal of these past studies was
to find short expansions for the whole correlated energy.
In contrast, the present paper is concerned with the

efficient expansion of the connected triples replacements
in the framework of coupled-cluster theory, and it is
based on the observation that the connected triples
corrections appear to converge faster to within chemical
accuracy than the doubles amplitudes. In a recent and
similar study, Sherrill and Schaefer have investigated
variational wave functions that incorporate limited
triples and quadruples substitutions [41].

The present study concentrates on the CCSD(T)-type
triples correction, which is the perturbational correction
that is most commonly used today [42]. Of course, the
reduced virtual space approach can be applied to other
types of perturbational corrections as well, for example
to the CCSD+T(CCSD) or CCSD-T -corrections
[43-45]. Furthermore, methods where the triples ampli-
tudes enter the computation in an iterative manner, as in
the full singles-and-doubles-and-triples model (CCSDT),
could also take great advantage of the reduced virtual
space approach, not least in view of the storage and
input/output (I/O) bottlenecks that occur when the
triples amplitudes are stored on external disk.

We refer to Ref. [46] for a recent overview of coupled-
cluster theory, and we only summarize the working
formulae for the CCSD(T) triples correction in the next
section. Section 3.1 describes a few possible ways of
constructing reduced spaces of virtual orbitals, for ex-
ample in terms of canonical virtual orbitals, improved
virtual orbitals, MP2 NOs, or optimized virtual orbitals.
The multiple basis sets of atomic functions are described
in Sect. 3.2. Section 4 is concerned with the computa-
tional aspects, for example with the projection of the
CCSD amplitudes obtained in S, onto the reduced space
S3. Our preliminary results are reported in Sect. 5 and
some general conclusions are presented in Sect. 6.

2 Perturbational triples corrections

The CCSD(T) perturbational triples correction [42] to
the CCSD energy is the most widely used approximate
triples model and is found to be very robust and stable in
determining molecular structures [47]. However, with a
computational scaling of O3V* (where O is the number
of occupied orbitals and ¥V is the number of virtual
orbitals), the method becomes rather demanding for
large systems. In the following, we investigate the
possible savings obtainable using a smaller set of virtual
orbitals in the conventional [48, 49] and integral-direct
[50, 51] CCSD(T) models.
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The CCSD wave function for a closed-shell system is
given by the ansatz

|CC) = exp(T)[HF) , (1)
where the cluster operator T is
T=T\+T . (2)

The connected singles {#/} and doubles {t cluster

amplitudes enter T as

=D tEa . (3)
=1> PEEy (4)

aibj

with #> = /2. The operators {E,} are the unitary group
generators

E = alTaiT + ailail . (5)

Here and in the following, the labels i,/ k,... and
a,b,c,... are used for occupied and virtual canonical
orbitals, respectively. The Mulliken notation is used for
the two-electron integrals, and Eis €5 ks -+ - €ar By By - - -
denote Hartree-Fock orbital energies.

The expression for the triples correction is given by
Lee et al. [48, 49] as

AR =3 S (AW + Wi + With) (Vb — Vist) Die
ijk abc
6
where (6)
= | St - S| o
d ]

VRS = Wi + (bjlek)t + (ailck)t] + (ailbj)s; (8)
Dj‘j}f git+e e —6a—&p— & . 9)
B_‘;,f‘ is a permutation operator defined as
() -() - () ()

(10)

n ach L bca n cab
ikj Jjki kij ) -

The O°V* and O'F° computational scalings appear
in the construction of the intermediate Wl",f" in Eq. (7),
whereas the other contractions scale as O3F>. Thus,
if a smaller set of virtual orbitals is used for the trlples
correction, we obtain a large saving due to the fourth
power dependence on the number of virtual orbitals. If
the ratio between the full and reduced virtual spaces is
about 3, the computational work will be reduced by
a factor of 81. Judging from the results presented in
the present work, a reduction by a factor of 3 is not
unrealistic for large basis sets, and may be seen as a
consequence of the faster convergence of the triples
correction in comparison with the energy contribution
from doubles replacements. In the conventional
approach, the amount of I/O operations is also reduced,
and because these scale as 0’3, the reduction in I/O

may be viewed as equally important as the reduction of
the computational effort.

In the integral-direct approach, the same reduction as
for the conventional method is obtained concerning the
computational effort, since the calculation is organized
in terms of multiple passes over the integrals. The total
amount of I/O scales as OV2N (where N is the number of
atomic basis functions), and this is negligible compared
to the computational effort. To summarize, we expect
that the use of a reduced virtual space in our integral-
direct CCSD(T) implementation will considerably
increase the application range of the method.

3 Multiple basis sets
3.1 Reduced virtual orbital spaces

The virtual orbital space can be reduced straightfor-
wardly by deleting a selected number of canonical SCF
orbitals, for example those with orbital energies larger
than a predefined threshold. However, this approach is
probably not the most efficient one, and other reduced
spaces of virtual orbitals should be investigated.

We proceed by allowing the virtual orbitals to rotate
among themselves to form some kind of optimal set of
correlating orbitals. Once this is achieved, the least im-
portant orbitals are removed and the Fock operator is
transformed into the basis of the remaining orbitals and
then diagonalized. In this manner, the final active virtual
orbital space consists yet again of canonical orbitals.
The associated orbital energies are also obtained. Thus,
a formalism based on canonical orbitals and their orbital
energies can be utilized to compute the CCSD(T) triples
correction, even though the reduced virtual orbital space
is defined in terms of a set of noncanonical orbitals.

In the present work, we study three types of virtual
orbitals:

1. Canonical virtual orbitals (CVO): These are the usual
virtual SCF orbitals obtained by diagonalizing the
all-electron Fock operator F.

2. Improved virtual orbitals (IVO): These orbitals are
obtained by diagonalizing the virtual-virtual block of
a Fock matrix F™ that is built from a prescribed
number of core orbitals [28],

core

F = hyy + Z[Z(ii|ab> — (ialib)] , (1)

where 4 is the one-electron Hamiltonian.

3. MP2 natural orbitals (MP2 NO): These orbitals are
obtained by diagonalizing the virtual-virtual block of
the MP2 one-electron density matrix [52],

V2(ib|jc)2(ialjc) — (ic|ja)]
“b_zzz (i +& —e—e)(ei+ & — & —

)

(12)

We can sum either over all occupied orbitals, includ-
ing the core, or over the valence orbitals only,



without further modifications. We have not consid-
ered an alternative approach, where the whole density
matrix (not only the virtual-virtual block) is diago-
nalized. In that case, the weakly occupied natural
orbitals would have to be orthogonalized to the
occupied SCF orbitals (orthogonalized natural orbit-
als, ONO). We also note that, for our exploratory
study, we have chosen the MP2 NOs for the sake of
simplicity. At a later stage of the study, we would like
to investigate the CCSD NOs.

A comparison of the three types of orbitals is pre-
sented in Fig. 1 for a calculation of the CCSD(T) triples
correction of the H,O molecule in the VQZ basis. The
la; core orbital was not correlated in the CCSD(T)
calculation, and the F®™ operator was built from this
orbital. Hence, F*°" is the Fock operator of the H,O%"
cation constructed from the lowest occupied orbital of
the neutral molecule. The CVOs and IVOs were ordered
with respect to increasing eigenvalues of the F and F°™
operators, respectively, and a predefined number of
orbitals with the highest eigenvalues were removed. The
MP2 NOs, in contrast, were ordered with respect to
decreasing eigenvalues of D — that is, with respect to the
occupation numbers — and a predefined number of
orbitals with the lowest eigenvalues were removed. The
MP2 density matrix was obtained by summing over all
occupied orbitals in Eq. (12).

It is demonstrated in Fig. 1 that the MP2 NOs pro-
vide the most effective expansion of the virtual space.
With only 50% of the original number of virtual orbit-
als, about 95% of the triples correction to the energy is
recovered by the MP2 NOs. We further observe that a
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Fig. 1. Valence shell CCSD(T) triples correction (E7 in %) obtained
from calculations employing canonical virtual orbitals (4), improved
virtual orbitals (<), and MP2 natural orbitals (x), as a function of the
number of orbitals in S5 (in %). Results for H>O using the VQZ basis
set
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very smooth, S-shaped curve is obtained with the MP2
NOs, whereas the CVOs display a considerable struc-
ture, converging less smoothly. The IVO curve is not as
smooth as the MP2 NO curve, but nevertheless repre-
sents a noticeable improvement on the CVOs.

Finally, the space of virtual orbitals can also be op-
timized by the methods developed by Adamowicz and
Bartlett about a decade ago [33-38]. These authors in-
vestigated the optimized virtual orbitals (OVO). These
orbitals are obtained by minimizing — by Newton’s
method, for example — the Hylleraas second-order
energy functional of Mgller-Plesset perturbation theory.

We have not considered the OVOs in the present
work since these orbitals appear to be somewhat biased
towards an optimal description of doubles replacements.
Adamowicz and Bartlett reported that the poor de-
scription of the triples replacements is a negative aspect
of the OVOs [33]. Still, the OVOs have been used for the
computation of triples corrections in previous work. For
example, an accurate CCSD+ T(CCSD) correlation
energy for the HF molecule was obtained by com-
puting the T(CCSD) triples correction using 56 OVOs
(—0.0089 E},) and adding this correction to the CCSD
energy computed in the full space of 75 virtual orbitals
(—0.3673 Ey) [34]. Furthermore, we note that Adam-
owicz has studied the minimization of that part of the
fourth-order energy functional that involves the singles
replacements (the usual ES4 energy contribution of
fourth-order Moller-Plesset theory) in order to obtain
OVOs for cases where singles replacements are impor-
tant [38]. Obviously, the most promising procedure for
generating OVOs with respect to the triples corrections
would consist of the minimization of the triples part
of the fourth-order energy functional — that is, ET4 .
Of course, such a procedure would not lead to any
computational savings if we are interested only in
perturbational triples corrections. It could perhaps be-
come attractive in conjunction with the full CCSDT
model. At this level, the perturbational optimization (at
the MP4 level) of the virtual orbitals for an efficient
description of triples replacements would be fully anal-
ogous to the MP2-level optimization of the OVOs for
use in CCSD calculations [33]. Preferably, one would
consider a “‘fourth-order functional” based on the
converged {tl‘.;.”} amplitudes of the CCSD calculation, in
this manner optimizing the perturbational triples cor-
rection itself at the fourth-order level of perturbation
theory.

3.2 Multiple AO basis sets

In the preceding section, we discussed a number of
possible ways of reducing and optimizing the space of
virtual orbitals, based on rotations among the virtual
orbitals followed by a truncation of the space. Alterna-
tively, we can start with a separate basis set of atomic
orbitals (AO) for the computation of the triples correc-
tions, orthogonalized to the occupied SCF orbitals. In
principle, the AO basis set for the triples correction (S3)
can be chosen completely independent from the AO
basis set used for the CCSD calculation (S3), but it is
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advantageous to choose S3 as a subset of S, since the
orthogonalization procedure will yield a final set of
virtual orbitals that is expanded in the union of the two
AO basis sets. Hence, we have restricted our study to the
use of true subsets of larger AO basis sets for the
computation of the triples corrections.

A seeming advantage of the multiple AO basis sets
approach is that no thresholds are required for the se-
lection of the reduced space. Furthermore, the method
provides the flexibility of selecting the type of basis
functions that is expected to be important for the triples
correction — diffuse or tight functions, low or high an-
gular momentum functions, and so on. However, one
must be careful not to choose a subset that is linearly
dependent on the occupied space (numerically, linear
dependence occurs with respect to a predefined threshold
and the multiple AO basis sets method is consequently
not completely free of thresholds). For example, it is
anticipated that in some cases, it may be difficult or even
impossible to orthogonalize the innermost s-orbitals of
atomic basis sets of the ANO or correlation-consistent
type to the occupied SCF orbitals of the molecule under
study.

The following example illustrates the use of multiple
AO sets. Let us consider the correlation-consistent VTZ
basis set for the H,O molecule, which constitutes the S,
space. It consists of 4s3p2d1f and 3s2pld contractions
for O and H, respectively, and contains 58 AO basis
functions. We choose the S; space by removing the
f-type functions from the VTZ basis set and denote the
remaining basis as VTZ'. This basis contains 51 func-
tions. However, we cannot construct 51 virtual orbitals
that are orthogonal to the occupied space. Of the 7
f-functions that are removed, two belong to the a; ir-
reducible representation in C,, symmetry, one belongs to
a», two belong to by, and two belong to b,. The VTZ'
basis will therefore be linearly dependent on the space
spanned by the occupied orbitals, since three a; orbitals
are occupied but only two are removed from the S
space. Therefore, one extra a; orbital is deleted by the
orthogonalization procedure and the final (orthogonal)
reduced virtual space consists of 50 orbitals.

3.3 Thresholds

It might be argued that the use of thresholds for the
selection of virtual orbitals prohibits the computation of
smooth potential energy surfaces, or that it would
introduce complications concerning the computation of
analytic first and second derivatives of the energy and
properties in general. This is not so. The way we proceed
is that we first determine the reduced virtual space
for the molecule at a prescribed geometry (e.g., at its
equilibrium). In all subsequent computations of the
potential energy curve or surface, the number of virtual
orbitals within each irreducible representation is kept
fixed at the number determined in the exploratory
calculation. Thus, the use of thresholds, for example
for the selection of MP2 NOs or the orthogonalization
procedure, constitutes no problems whatsoever.

4 Computational details

In this section we briefly discuss the implementation of
the multiple basis sets. We write the cluster operator in
terms of orthonormal singlet-excited configurations,

nIHE) = Y et (13)
BHE) =Y Y ¥ )
Jiz;cg%—)w#(—» , (14)
where o
) = LECHE) | (15)
W () = 41+ 05) (1 + 8up) *(EuiE; + Enoy) | HF) |
(16)
¥) (=) = 55(EaiEs; — EniEoj) HF) (17)

The singles and doubles amplitudes that were computed
using the full space {a} can be projected onto the
reduced virtual space {a} by evaluating the overlap
between the orthogonal spin-adapted configurations.
For the singles amplitudes we get

i =Jscl =5 P =J5> ¢l =D tiSu -
(18)

The overlap between doubly excited configurations is

(PL(H)EL(4)) = (14 355) (1 + 0p)

X (SaaSep + SavSpa) (19)
(P ()5 (=) = SaaSip — SavSpa - (20)
and thus, noting that
ab ba ab _ ba
Cij (+) - clj (+) cl] ( ) - lj ( ) ’ (21)
the projectwn of the doubles amplitudes becomes
=D A EEP I (+)
a<b
1
14+ 0up\2
ab a
= Ly Sa’aS’ 3 22
Z +) (1 * %) 5 22)
Z C \Pab Z C SaaSbb
a<b
(23)

We now obtain the following simple expression for the
projected doubles amplitudes,

1 L &b
=31+ 8P (1 + 0gp ey

b
= 1SSy, -
ab

() +35577 ()



It thus appears that the {¢/} and {tl?‘}b } amplitudes that
occur in the coupled-cluster approach where the Schro-
dinger equation is projected onto a bi-orthogonal basis
can be computed in a straightforward manner from a
two-index transformation. The transformation of the
{cf} and {cg.b } amplitudes, however, requires some care
with respect to the normalization of the ‘“‘diagonal”
terms where a = b.

We collect the orbital coefficients of the full set of
canonical virtual orbitals in a matrix V, the coefficients
of the reduced set of virtual orbitals in a matrix V, and
the singles and doubles amplitudes in the vectors T} and
matrices Tj, respectively,
(T =16, (T, =17 .

ab — tij

(25)
The projection of the CCSD amplitudes onto Sj; is then
given by

T, = VisvT] | (26)

T/ = VISvTivisy | (27)

where S is the overlap matrix. Hence, the computational
procedure consists of transforming the singles and
doubles amplitudes, followed by computing the triples
correction as usual from the transformed amplitudes.

5 Results and discussion

The calculations were performed on IBM RS/6000 590
workstations with the program DIRCCR12-95 [53] using
correlation-consistent [54-59] and ANO basis sets
[60, 61]. Note that, in order to save space, we use the
abbreviations VXZ, CVXZ, and AVXZ for the cc-pVXZ,
cc-pCVXZ, and aug-cc-pVXZ basis sets, respectively,
where X = D, T, Q, 5, 6. For the computation of the
electric properties we have employed the doubly and tri-
ply augmented basis sets, which are denoted as d-AVXZ
and t-AVXZ, respectively [57].

The following atomic masses were used: M(C'?) =
12.000000000 amu, M(N')=14.003074008 amu,
M(0'®) = 15994914 640 amu, M(F'%) = 18.998 403 250
amu, and M(Ne®®) = 19.992439 100 amu [62].
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5.1 Calculations in a reduced AO basis: N, and Ne,

We first consider the use of reduced AO sets for the
calculation of the triples correction. In Table 2, we have
listed for N, the bond distances, harmonic vibrational
frequencies, and electronic energies obtained with a
variety of S, and S; spaces. There are two sets of
calculations in this table: one set of calculations based
on the [6s5p4d3f] ANO basis of Widmark et al. and
another set based on the AVQZ basis of Dunning and
coworkers.

For the ANO calculations, we have employed three
basis sets denoted ANO;, ANO,, and ANO;3;. The ANO3
basis corresponds to the full [6s5p4d3f] ANO basis.
The [5s4p3d2f] ANO, basis has been generated from
ANOs; by the removal of one set of functions (with
lowest occupation) for each angular momentum. Final-
ly, by removing one more set of functions, we arrive at
the smallest [4s3p2d1f] basis denoted ANO,. We note
that these basis sets constitute a hierarchy of sets where
the smaller ones are true subsets of the larger ones.

Two sets of calculations have been carried out with
these basis sets. First, we calculated the CCSD energies
for all three basis sets. Next, we calculated the CCSD(T)
energies, employing only the largest ANOs set for the
CCSD wave function and the basis sets ANO;, ANO,,
and ANO; for the triples correction.

We first note that for the largest basis set ANQOjs, the
bond distance is 109.36 pm at the CCSD level and
110.08 pm at the CCSD(T) level. The corresponding
numbers for the harmonic frequency are 2429.7 and
2349.8 cm~!. Clearly, the triples corrections are quite
significant: 0.72 pm and —79.9 cm~'. Next, we observe
that triples corrections are only moderately affected by
the reductions in the AO space. In the ANO; S; basis,
the triples corrections are 0.69 pm and —77.5 cm™' —
that is, only 0.03 pm and 2.4 cm~' smaller in magnitude
than the full corrections. The corresponding errors in the
ANO, basis are 0.01 pm and 0.7 cm~!. These differences
are much smaller than those observed at the CCSD level,
where for example the ANO; basis gives a bond length
that is 0.68 pm too long and and a frequency that is
11.6 cm~! too low relative to the ANO; basis. We also
note that the calculation of the triples correction with

Table 2. Results for the N,

-1 a
molecule: equilibrium bond S Ss re (pm) @ (em ™) Emin (En) Noir*
fﬁ%’;’&iﬂﬁf‘;ﬁn‘fgﬁn CCSD 4s3p2d1f 110.04 2418.1 ~109.351 873
total energy (Emin) obtained CCSD 534p3d2f 109.45 2425.1 —109.373 911
from coupled-cluster CCSD 6s5pad3f 109.36 2429.7 —109.380 042
calcalations using maltiple CCSD(T) 6s5pad3f  As3p2dlf 110.05 23522 ~109.397 161 60
AO basis sets. The 1s core CCSD(T) 6s5p4d3f Ssdp3d2f 110.07 2350.5 —109.399 808 92
Ao sets. The 1s core CCSD(T) 6s5pdd3f  6sSpad3f 110.08 23498 ~109.400 134 17
CCSD vQz' 109.53 2415.0 —109.344 486
CCSD AVQZ’ 109.53 2415.2 —109.345 613
CCSD vQz 109.31 2435.6 —109.384 266
CCSD AVQZ 109.32 24343 —109.386 848
CCSD(T) AVQZ vQz’ 109.99 2359.4 —109.404 715 64
CCSD(T) AVQZ AVQZ’ 110.00 2358.1 —109.404 791 82
CCSD(T) AVQZ vQz 110.04 2355.1 —109.407 039 110
_ . CCSD(T) AVQZ  AVQZ 110.05 23545 109.407 243 153
Number of virtual orbitals in Experiment [63] 109.77 2358.6

S3
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the ANO, basis is about 15 times faster than the eval-
uation of the triples correction with the full ANOj basis,
and that the use of the ANO, basis gives a speedup of
about 2.6 relative to the ANO; basis. We conclude that
the use of a reduced AO space for the calculation of
triples corrections is a promising approach, which may
give significant computational savings with an accept-
able loss of accuracy.

We now consider the calculations carried out using
the correlation-consistent basis sets. Four different basis
sets have been used: the [5s4p3d2f1g] VQZ basis, the
[5s4p3d] VQZ' basis, the [6s5p4d3f2g] AVQZ basis, and
the [6s5p4d] AVQZ' basis. Thus, the VQZ' and AVQZ’
basis sets have been obtained from the full VQZ and
AVQZ sets by removing the f'and g correlating orbitals.
The augmented basis sets AVQZ and AVQZ' are gen-
erated from the VQZ and VQZ' sets by the addition of
diffuse functions, one set for each angular momentum
present in the original basis.

From Table 2, we see that the omission of the f and ¢
correlating functions changes the triples corrections by
about 0.05 pm for the bond distance and 4 cm™! for the
frequency. These corrections should be compared with
the full triples corrections of 0.73 pm and —79.8 cm™!
for the AVQZ basis. The error introduced into the tri-
ples correction by the removal of the f and g correlating
functions is therefore not negligible (ca. 7%) and per-
haps too large to be acceptable for general use, although
it should be kept in mind that the removal of the f and ¢
functions gives a 10-fold speed-up in the calculation of
the triples. What is needed, however, is a more flexible
way of reducing the size of the virtual orbital space. Such
an approach will be studied in the next subsection.

Before we go to Sect. 5.2, let us first consider another
example: the weak van der Waals interaction between
two Ne atoms. The results are collected in Table 3. We
have chosen this example for two reasons. First, the
triples correction is quite large (ca. 20% of the interac-
tion energy), and second, this case study demonstrates
that it is possible to apply the counterpoise correction in
a straightforward manner when multiple AO basis sets
are used. On the other hand, the counterpoise procedure
is perhaps not so well defined for calculations in a
reduced virtual basis of the type reported in the next
subsection. For example, if the selection of the reduced
virtual basis is based on NO occupation numbers, it is
likely that all of the functions on the “ghost” atom will
give rise to NOs with such low occupations that they will

be omitted from the calculation right away. We return to
this point in Sect. 5.3.

The results in Table 3 show that the S; basis sect
[4s4p3d2f] is sufficient for the computation of the triples
correction. The basis set truncation error of the
[6s5p4d3f] basis at the CCSD level is much larger than
the error introduced by using the [4s4p3d2f] set for the
triples correction instead of the full [6s5p4d3f] basis.
Finally, we note that for the calculations on the
Ne - - - Ne interaction we had to remove the innermost s-
and p-type ANOs (rather than the outermost s and p as
in the N, calculations) because these atomic functions
could not be orthogonalized to the occupied orbital
space. This was possible for the N; molecule in the
previous example, but due to the very weak interaction,
the orbitals of the Ne atoms change so little that the
atomic funcions are linearly dependent on the occupied
orbitals of the van der Waals complex.

5.2 Calculations in a reduced virtual basis:
Nz, F2, and CO

We now discuss the calculation of the triples correction
in an active virtual space. In Table 4, we present the
results from calculations on the N, system using the
correlation-consistent basis sets VIZ, VQZ, and V5Z
and a variety of active triples virtual spaces. In Table 5,
the errors for these calculations are given relative to the
full V5Z/CCSD(T) results. Finally, in Table 6, we have
listed the triples corrections relative to the CCSD result
for the different active virtual spaces. Tables 7-9 contain
the corresponding numbers for the F, system, and in
Tables 10-12 the results for the CO molecule are
presented. In the following, we denote the active virtual
space spanned by MP2 NOs of occupation numbers
larger than 107" by S%.

The first thing to note about these calculations is the
very orderly improvement in the properties (i.e., the
bond distance, the harmonic frequency, and the energy)
with extension of the primary doubles space S, and
with the triples virtual space S3. The energy decreases
monotonically with the extension of either space. The
bond distance, in contrast, decreases with each extension
of the primary space but increases as the triples virtual
space is extended. In accordance with the behavior of
the distance, the harmonic frequencies increase with

Table 3. Ne- - -Ne van der Waals

interaction: equilibrium S Ss re (ao) e (em™) a(uEn) N
interatomic separation (r,),
: Uncorrected

Zﬁgm\;’éﬁcdggtf%n&e&(gég’ CCSD 65Spad3f 5.988 252 ~103.0

from coupled-cluster calcula- CCSD(T) 6s5pad3f 4s3p2d1f 5.943 26.6 —-114.4 60

tions using multiple AO basis CCSD(T) 6s5pad3f 4s4p3d2f 5.914 27.5 —-122.0 90

sets. The Ls core orbitals were CCSD(T) 6s5pAd3f 6s5pAd3f 5.913 27.6 -123.0 114

not correlated Counterpoise corrected
CCSD 6s5pAd3f 6.089 21.9 -80.3
CCSD(T) 6s5pAd3f 4s3p2d1f 6.044 232 -89.7 60
CCSD(T) 6s5pad3f 4s4p3d2f 6.011 24.1 -96.8 90
CCSD(T) 6s5p4d3f 6s5p4d3f 6.002 24.4 -99.0 114

& Cf. Table 2
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Table 4. Using MP2 NOs for

a -1

the CCSD(T) triples correction: S Ss re (pm) ®e (em™)  Emin (En) Nir”

equilibrium bond length (r,),

harmonic wavenumber (w,), CCSD VTZ _3 109.67 2423.8 —-109.355 361

and minimum total energy CCSD(T) VTZ 1074 110.14 2371.8 —109.366 598 17

(Emin) for No. The 1s core CCSD(T) VTZ 10 110.35 2348.4 —109.373 448 44

orgi‘zals were not correlated CCSD(T) VTZ VTZ 110.38 2346.0 —-109.373 937 53
CCSD vVQZzZ 109.31 2435.6 —109.384 266
CCSD(T) vQz 1073 109.77 2384.9 —109.395 367 17
CCSD(T) vVQzZ 1074 109.99 2360.7 —109.402 632 48
CCSD(T) VQZz vVQz 110.03 2356.2 —109.404 391 103
CCSD Vs5Z 109.22 2439.9 —109.393 470
CCSD(T) V5Z 1073 109.68 2389.8 —109.404 500 17
CCSD(T) V5Z 107 109.89 2365.7 —-109.411 619 48
CCSD(T) Vs5Z 107 109.93 2361.1 —-109.413 741 103
CCSD(T) VsZ \'%AV4 109.94 2359.8 —109.414 195 175
Experiment [63] 109.77 2358.6

# NOs with occupation number below the given threshold are deleted. The MP2 one-electron density
matrlx was formed using all occup1ed orbitals

> Number of virtual orbitals in S3

Table 5. Using MP2 NOs for the CCSD(T) triples correction: errors
in the equilibrium bond length (r,), harmonic wavenumber (w,),
and minimum total energy (Emin) of Nj

S CCSD 83 54 S3

Sr. (pm) VTZ  -027 0.0 0.41 0.44
vQzZ  -063  -0.17 0.05 0.09
V5Z 072 =026  -0.05 0.0l

S (cm™") VIZ 640 120 -114 -138
vQzZ 758 25.1 09 =36
V5Z 80.1 30.0 5.9 1.3

SEmin (MEy) VIZ 588 47.6 40.7 403
VQZ 299 18.8 11.6 9.8
\V 20.7 9.7 2.6 0.5

Table 6. CCSD(T) triples correction to the equilibrium bond length
(r.), harmonic wavenumber (®,), and minimum total energy (Emin)
of Nz

S, 83 s3 S3

Ar, (pm) VTZ 0.47 0.68 0.71
vVQZz 0.46 0.68 0.72
N4 0.46 0.67 0.71

Aw, (cm™") VTZ -52.0 -75.4 -77.8
vVQZz -50.7 749 -79.4
V5Z -50.1 -74.2 -78.8

AEpin (MEy) VTZ ~11.2 -18.1 -18.6
vQZz —11.1 -18.4 -20.1
V52 -11.0 -18.1 -20.3

extensions of the primary space but decrease with ex-
tensions of the triples virtual space.

The different behavior of the bond distances and vi-
brational frequencies with respect to extensions of the
doubles and triples orbitals spaces is clearly displayed in
Tables 5, 8, and 11 — for the bond distances, the negative
errors are located in the lower left corner of the table; for
the frequencies, the negative errors are located in the
upper right corner. Accordingly, we find that the
smallest errors are located on the diagonal — that is, at
the VTZ level with an S} triples space, at the VQZ/S4
level, and at the V5Z/S3 level These levels thus appear to
represent balanced treatments of the doubles and triples

spaces, where the errors in the doubles and triples spaces
systematically cancel each other out. Although we do
not unconditionally advocate the use of the hierarchy
VTZ/S3, VQZ/S3, and V5Z/S3, it nevertheless appears
to offer an attractive sequence of models for accurate
calculations of correlation effects. A considerably more
extensive statistical investigation of the performance of
these models would be required before these models can
be adopted for routine calculations.

The next thing to note about the calculations is that
the triples corrections are almost independent of the size
of the primary orbital space. Thus, we find that, for the
N, molecule, the S3 triples correction to the bond length
is 0.46-0.47 pm for all three primary basis sets. The S§
corrections are 0.67 to 0.68 pm and the S3 corrections
are 0.71-0.72 pm. The correspondmg intervals for the F»
system are 1.48-1.53 pm at the S3 level, 2.00-2.07 pm at
the S§ level, and 2.12-2.22 pm at the S5 level. For CO,
we ﬁnd the intervals 0.44-0.47 pm, 0. 66 0.68 pm, and
0.70-0.71 pm, respectlvely.

Concerning the S3 level, we note that for the VTZ
basis, the full virtual space S3° is significantly smaller
than the corresponding S; space at the V5Z level. In
contrast, the S5° space for the VQZ basis is only shghtly
smaller thdn the V57 S5 space. We also note in passing
that the size of the actlve virtual space is more or less
independent of the primary space as long as the primary
space contains a sufficient number of orbitals.

The same behavior is observed for the frequencies and
the energies. At the S§ level, for example, the triples cor-
rections to the frequency are —75.4to —74.2cm™! for the
N, molecule, —88.2 to —88.0cm ™! for the F, system, and
—67.3 to —66.7 cm~! for CO. For the energies, at the Sy
level, the intervals are —18.4 to —18.1 mE}, (N3), —18.3
to —17.3 mEy, (F,), and —16.8 to —16.6 mE}, (CO).

From these numbers, we conclude that the triples
corrections are almost independent of the quality of the
primary basis set, at least for sets of correlation-consis-
tent triple-zeta quality or better. This observation implies
that we may converge the CCSD energy and the triples
corrections independently and that, for a given accuracy,
the cost of the triples correction is independent of the size
of the primary basis set. For example, the calculation of
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Table 7. Using MP2 NOs for

a =1 b
the CCSD(T) triples correction: S Ss re (pm) @ (em™)  Emin (En) Neir*
equilibrium bond length (r,),
harmonic wavenumber (a,), CCSD VTZ _3 139.46 1012.5 —199.278 305
and minimum total energy CCSD(T) VTZ 1074 140.99 945.8 —199.287 073 18
(Emin) for F». The 1s core CCSD(T) VTZ 10 141.48 924.3 —199.295 646 48
orgi‘zals were not correlated CCSD(T) VTZ VTZ 141.58 919.9 —199.296 112 51

CCSD vVQz 139.07 1015.6 —199.338 314
CCSD(T) vQz 107 140.52 952.9 —199.347 041 18
CCSD(T) vQz 107 141.14 927.6 -199.356 311 50
CCSD(T) vVQz vVQzZ 141.29 921.1 —199.358 906 101
CCSD V5Z 138.80 1021.0 —199.359 280
CCSD(T) Vs5Z 1073 140.28 960.5 —-199.367 934 18
CCSD(T) V5Z 1074 140.80 935.0 —199.377 603 52
CCSD(T) Vs5Z 1073 141.00 928.0 —-199.380 309 107
CCSD(T) \'%AV4 V5Z 141.10 926.0 —199.380 987 173
Experiment [63] 141.19 916.6

& Cf. Table 4

Table 8. Using MP2 NOs for the CCSD(T) triples correction: errors
in the equilibrium bond length (r,), harmonic wavenumber (w,),
and minimum total energy (Emin) of F»

S5 CCSD  S3 54 S8

or, (pm) VTZ -1.64  —0.11 0.38 0.48
vQz 203  -0.58 0.04 0.19
Vs5Z -230 -0.82  -030  —-0.10

dwe (em™)  VTZ 86.5  19.8 -1.7 -6.1
vQz 89.6  26.9 1.6 -49
V5Z 950  34.5 9.0 2.0

0Emn (mEy)  VTZ 1027 939 85.3 84.9
vQz 427 339 247 22.1
V5Z 217 131 34 0.7

Table 9. CCSD(T) triples correction to the equilibrium bond length
(r.), harmonic wavenumber (w,), and minimum total energy (Emin)
of F 2

S, 83 st 83

Ar, (pm) VTZ 1.53 2.02 2.12
vVQz 1.45 2.07 222
V52 1.48 2.00 2.20

Aw, (cm™)  VTZ —-66.7 -88.2 -92.6
vVQZz -62.7 -88.0 -94.5
V52 -60.5 -86.0 -93.0

AEpi, (mE,) VTZ -8.8 -17.3 -17.8
vQz -8.7 -18.0 -20.6
V52 -8.7 -18.3 -21.0

the triples correction at the S3 level costs exactly the same
for the VQZ and the V5Z primary basis sets.

Another important observation to be made about the
calculations for the N, F,, and CO molecules is that the
convergence of the CCSD energies and properties with
respect to the primary basis is slower than the conver-
gence of the triples corrections with respect to the active
virtual space. Thus, at the S35 level, the triples correction
to the bond distance appears to have been converged to
within 0.1 pm, the frequency to within a few wave
numbers, and the energy to within 1-2 mFEy,. In contrast,
at the VQZ level (which contains the full S space),
the CCSD(T) energy is still in error by as much as
10-20 mFEy, the bond distance by 0.1-0.2 pm, and the
vibrational frequency by 1-5 cm~!.

The different convergence characteristics of the
CCSD energy and properties on the one hand and the

triples correction on the other make the use of multiple
basis sets even more attractive, since it now becomes
possible to concentrate the efforts where they are needed
— that is, we may converge the CCSD energy well
without having to pay a penalty in terms of computation
time in the calculation of the triples correction.

5.3 Ne, in a reduced virtual basis

In Sect. 5.1, we described the calculation of the Ne,
interaction energy using multiple AO basis sets. We now
consider the same system in a reduced virtual basis of
MP2 NOs, (see Table 13). It is particularly interesting to
investigate the counterpoise correction when a reduced
virtual basis set is used, because for a given occupation
number threshold, the AOs of the ghost atom do not
increase the number of selected MP2 NOs, and therefore
not the size of the virtual space. One might perhaps
worry that the counterpoise correction cannot be applied
within the framework of a reduced virtual space of MP2
NOs.

Comparing the present results with those in Table 3
(obtained using multiple AO sets), we find that the two
sets of results are very similar. It thus does not appear
that noticeable errors are introduced when the counter-
poise method is applied in a reduced virtual basis. We
note, however, that the triples contribution to the total
counterpoise correction concerning the interaction
energy is only 1.3 pEy. Using the full 6s5p4d3f basis set,
the counterpoise correction is 22.7 uEp at the CCSD
level and 24.0 pEy at the CCSD(T) level. Thus, any small
errors related to the triples contribution to the count-
erpoise correction must be smaller than 1.3 uE, and
negligible in comparison with the fraction of the total
triples contribution recovered by the reduced space of
virtual orbitals. Certainly, by far the most important
contribution to the counterpoise correction occurs at the
CCSD level, neither at the Hartree-Fock nor at the
triples level.

5.4 Calculations on ozone

We have determined the molecular structure of ozone
at the CCSD(T) level using the correlation-consistent
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Table 10. Using MP2 NOs for

a -1 F
the CCSD(T) triples correction: S Ss re (pm) @e (em™)  Emin (En) Nuir*
equilibrium bond length (r,),
harmonic wavenumber (a,), CCSD VTZ . 112.87 2222.9 —113.138 549
and minimum total energy CCSD(T) VTZ 1074 113.34 2173.7 -113.148 299 17
(Emin) for CO. The 1s core CCSD(T) VTZ 10 113.55 2155.6 —113.155 109 44
orgi‘zals were not correlated CCSD(T) VTZ VTZ 113.57 2153.7 —113.155 579 53

CCSD vVQzZ 112.43 2234.8 -113.169 411
CCSD(T) vQz 1073 112.88 2187.4 -113.179 013 17
CCSD(T) vQz 1074 113.10 2167.7 -113.186 250 48
CCSD(T) vVQz vVQZz 113.14 2164.4 —113.187 906 103
CCSD V5Z 112.36 2236.3 -113.179 113
CCSD(T) V5Z 1073 112.80 2189.5 -113.188 657 17
CCSD(T) V5Z 107 113.02 2169.6 —113.195 847 48
CCSD(T) V5Z 107 113.06 2166.0 -113.197 764 103
CCSD(T) V5Z \'%AV4 113.07 2165.1 —113.198 188 175
Experiment [63] 112.83 2169.8

& Cf. Table 4

Table 11. Using MP2 NOs for the CCSD(T) triples correction:
errors in the equilibrium bond length (r,), harmonic wavenumber
(we), and minimum total energy (Epin) of CO

S, cCcsh 83 5% 53

r (pm) VTZ -0.20 0.27 0.48 0.50
vQz —0.64 -0.19 0.03 0.07
V5Z -0.71 -0.27 -0.05 -0.01

dw, (cm™)  VTZ 57.8 8.6 -9.5 -11.4
vQz 69.7 22.3 26 -0.7
V52 712 24.4 4.5 0.9

OEmin (MEy) VTZ 59.6 49.9 43.1 42.6
vQZ 28.8 19.2 11.9 103
V52 19.1 9.5 2.3 0.4

Table 12. CCSD(T) triples correction to the equilibrium bond
length (r,), harmonic wavenumber (w,), and minimum total energy
(Emin) of CO

S, S3 S S3

Ar, (pm) VIZ 0.47 0.68 0.70
vQZ 0.45 0.67 0.71
V5Z 0.44 0.66 0.70

Aw, (cm™) VTZ —49.2 -67.3 -69.2
vQZ —47.4 -67.1 -70.4
VsZ —-46.8 —66.7 -70.3

AEmin (mEy) vVTZ -9.7 -16.6 -17.0
vQz -9.6 -16.8 -18.5
VsZ -9.5 -16.7 -18.7

valence triple-zeta (VTZ) basis set (see Table 14). Ozone
was selected since the triples corrections are particularly
large for this molecule. In the VTZ basis, it increases the
equilibrium bond length by as much as 2.5 pm and it
decreases the bond angle by —0.7°. In the S space, the
respective corrections are 2.5 pm and —0.6°, but the S§
space is almost as large as the full VTZ orbital space.
The S3 space, on the other hand, is significantly smaller,
and for this reduced virtual space the triples corrections
are 1.8 pm and —0.5°, respectively. Thus, using about
35% of the virtual orbitals space yields about 70% of the
full VTZ/CCSD(T) triples correction.

We would like to stress that, for ozone and the cal-
culations of the electric properties that are reported in
the next subsection, we have used valence-shell MP2

NOs — that is, the MP2 one-electron density matrix was
formed by summing over the valence orbitals only. This
contrasts with the previously reported calculations on
N,, F,, and CO, where the MP2 one-electron density
matrix also included the contributions from the core
orbitals. Both possibilities seem to work equally well.

We conclude that the S; space of the VTZ basis
offers attractive computational opportunities. Today,
CCSD(T) calculations at this level are possible for
extended molecular systems, for example for systems
containing 10-20 first-row atoms. CCSD calculations
that correlate about 100 electrons using 300-600 atomic
basis functions are tractable now, but the full CCSD(T)
triples correction is still beyond reach for calculations of
this size. Using the S5 space, however, the computation
of the triples correction would become feasible.

5.5 Calculations of electric properties

Tables 15 and 16 show the results from CCSD(T)
calculations of the electric dipole moment of CO and the
dipole polarizability of the F~ ion, respectively, using
reduced virtual spaces for the triples correction. We have
used doubly and triply augmented correlation-consistent
basis sets, as it is crucial for accurate computations
of electric properties to provide diffuse atomic basis
functions, in particular for the calculation of the dipole
polarizability of a negatively charged ion.

In order to avoid a corruption of the true reduced
space effects by unwanted effects due to changes in the
geometry, we have computed the dipole moment of CO
at a fixed bond length of c_o = 112.83 pm, which is the
experimental equilibrium bond length.

First, we observe that the MP2 NOs in the augmented
basis sets cover a broad range of occupation numbers.
The d-AVTZ basis for CO, for example, provides
18 orbitals with occupation numbers below 107°, and
the t-AVTZ basis for F~ provides 16 NOs below this
threshold.

Second, we note that the S3 space is not adequate for
the computation of the triples correction to the polari-
zability of F~. This correction is ca. 2 a.u. in the t-AVTZ
basis, and the S; space recovers only about 4% of it.
Note that this space consists of 9 orbitals only. However,
it appears that the S space already contains those vir-
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Table 13. Ne- - -Ne van der

a -1 . b
Waals interaction: equilibrium S Ss re (do) e (cm™") ¢ (HEn) Nir
interatomic separation (r,),
. Uncorrected
harmonic wavenumber (), CCSD 6sSpad3f 5.988 252 ~103.0
and well depth (¢) obtained . 3
1, CCSD(T) 6s5p4d3f 10 5.955 25.8 -107.2 18
from coupled-cluster calcula- 4
. . CCSD(T) 6s5p4d3f 10 5.946 26.3 —-111.5 50
tions using valence-shell MP2 s
NOs. The 1s core orbitals were CCSD(T) 6s5p4d3f 10 . 5.930 26.9 —-116.7 82
not correlated CCSD(T) 6s5p4d3f 6s5pad3f 5913 27.6 -123.0 114
Counterpoise corrected
CCSD 6s5p4d3f 6.089 21.9 -80.3
CCSD(T) 6s5p4d3f 1072 6.049 22.7 —-84.8 18
CCSD(T) 6s5p4d3f 107 6.032 23.4 -90.2 50
CCSD(T) 6s5p4d3f 1073 6.017 23.9 -94.3 82
CCSD(T) 6s5p4d3f 6s5pad3f 6.002 24.4 -99.0 114

4 NOs with occupation number below the given threshold are deleted. The MP2 one-electron density
matrix was formed using the occupied valence orbitals

Number of virtual orbitals in S

Table 14. Ozone molecule:

equilibrium geometry (r, and R} S5° r. (pm) lo-0-0 (deg) Enin (En) Nyip®
/0-0-0) and minimum total
energy (Emis) obtained from CCSD VTZ 73 125.0 117.6 —225.086 66
PET CCSD(T) VTZ 10 126.8 117.1 —225.116 99 27
coupled-cluster calculations 4
. CCSD(T) VTZ 10 127.5 117.0 -225.131 74 68
using valence-shell MP2 NOs. gy 1 VTZ VTZ 127.5 116.9 2513278 78
The 1s core orbitals were not E .( ) 64 127'2 116.8 e
correlated Xperiment [64] :
# Cf. Table 13
Table 15. CO molecule (inter- 2
nuclear distance fixed at Sz Ss (D) Eor (En) Nuir*
rc—o = 112.83 pm): electric di-
pole moment (i) and total CCSD AVDZ . 0.0963 —-113.060 978
: CCSD(T) AVDZ 10 0.1257 —113.067 238 13
energy (Eyy) obtained from 4
coupled-cluster calculations CCSD(T) AVDZ 10 0.1375 —-113.073 013 28
: CCSD(T) AVDZ d-AVDZ 0.1407 —-113.073 280 39
using valence-shell MP2 NOs.
The 1s core orbitals were not CCSD d-AVTZ 0.0713 —113.145 401
correlated CCSD(T) d-AVTZ 107 0.1225 —113.155 022 17
CCSD(T) d-AVTZ 107 0.1284 —-113.162 072 44
CCSD(T) d-AVTZ 107° 0.1282 —113.162 963 72
CCSD(T) d-AVTZ 1076 0.1283 —-113.163 003 99
2 Cf Table 13 CCSD(T) d-AVTZ d-AVTZ 0.1283 —113.163 003 117
. Table
Table 16. F~ ion: static dipole a ) P
polarizability () and total en- S2 Ss o (a.u.) Eor (En) Nuir*
ergy (Ei) obtained from
coupledi’cluster calculations CCSD d-AVDZ 3 13.58 —99.663 598
. CCSD(T) d-AVDZ 10 13.60 —-99.664 636 9
using valence-shell MP2 NOs. 4
The 1s core orbital was not CCSD(T) d-AVDZ 10 14.82 —99.669 833 18
correlated CCSD(T) d-AVDZ d-AVDZ 14.84 -99.670 054 27
CCSD t-AVTZ 15.09 —-99.739 951
CCSD(T) t-AVTZ 107 15.17 —99.740 715 9
CCSD(T) t-AVTZ 1074 17.13 —-99.749 234 28
CCSD(T) t-AVTZ 107° 17.10 —-99.750 318 41
CCSD(T) t-AVTZ 1076 17.07 -99.750 416 57
CCSD(T) t-AVTZ t-AVTZ 17.07 —-99.750 419 73

& Cf. Table 13

tual orbitals that are important for a quantitative com-
putation of the triples correction of the electric proper-
ties under study. In this reduced space, the results are
very close to the respective results from the full basis
sets.

Third, for the first time in the present study, we ob-
serve that the magnitude of the triples correction is
overestimated by some of the reduced spaces of virtual
orbitals. The CCSD(T) triples correction to the dipole
moment of CO in the S3/d-AVTZ space is 100.1% of the



full space correction, and the corrections to the polari-
zability of F~ amount to 100.4% and 100.2% in the S3/t-
AVTZ and S3/t-AVTZ spaces, respectively. The reason
for this is that, in comparison with calculations without
electric field, these spaces recover slightly more of the
energy correction if the electric field is applied.

We believe that the CO and F~ examples represent
rather difficult cases, and we are very pleased with the
performance of the reduced virtual spaces for the
calculation of the electric properties.

6 Conclusion

We have reduced the size of the basis set of virtual
orbitals for the computation of perturbational triples
corrections in coupled-cluster theory. It has been shown
in a number of case studies that the virtual space can be
reduced considerably (e.g., by 50%), without a signifi-
cant loss in accuracy. In order to achieve the best
possible accuracy using limited computer resources, the
best strategy is to employ the largest basis set that is
feasible for the CCSD calculation and a smaller one for
the triples correction — just small enough to make
possible its computation.

The important observation was made that the con-
vergence of the CCSD energy with the size of the basis
set and the convergence of the triples correction are
largely mutually independent. Thus, it would be ad-
vantageous to investigate the convergence behavior of
the S, and S; spaces independently, thereby yielding
additional insight into the overall accuracy of the
CCSD(T) calculation.

For the bond distances and vibrational frequencies,
the extensions of the S, and S3 spaces have opposite
effects that may be exploited in studies on large systems
(although careful calibration is then needed).

Most of the calculations reported in this paper were
based on MP2 NOs. We do not expect these orbitals to
be the optimal orbitals for the triples corrections, and it
seems worthwhile to develop more sophisticated
approaches, for instance methods that minimize
the (always negative) CCSD + T(CCSD)-type triples
correction. Such a method would be similar to the
OVO approach concerning the MP2 energy functional
developed by Adamowicz and Bartlett.

In conjunction with the integral-direct CCSD meth-
od, the use of active spaces of virtual orbitals for the
triples replacements will result in a vast increase in the
size of the molecular systems accessible by coupled-
cluster methods that include perturbational triples cor-
rections. This will also apply to the full CCSDT method.
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